小学六年级的数学知识是比较难的,以下是小编整理的一些人教版六年级下册数学电子课本,仅供参考。
人教版六年级下册数学电子课本
完整版请移至官方“国家中小学智慧教育平台”查看下载
6年级下册数学知识点
1.1整数和整除的意义
1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,,叫做整数
2.在正整数1,2,3,4,5,,的前面添上号,得到的数1,2,3,4,5,,叫做负整数
3.零和正整数统称为自然数
4.正整数、负整数和零统称为整数
5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2因数和倍数
1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数
3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身
4.一个数的倍数的个数是无限的,其中最小的倍数是它本身
1.3能被2,5整除的数
1.个位数字是0,2,4,6,8的数都能被2整除
3.在正整数中(除1外),与奇数相邻的两个数是偶数
4.在正整数中,与偶数相邻的两个数是奇数
5.个位数字是0,5的数都能被5整除
6.0是偶数
1.4素数、合数与分解素因数
1.只含有因数1及本身的整数叫做素数或质数
2.除了1及本身还有别的因数,这样的数叫做合数
3.1既不是素数也不是合数
4.奇数和偶数统称为正整数,素数、合数和1统称为正整数
5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数
6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数:树枝分解法,短除法
1.5公因数与最大公因数
1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数
2.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数
3.如果两个数是互素数,那么这两个数的最大公因数是
6年级下册数学知识点归纳 篇2
1.负数:负数是数学术语,指小于0的实数,如3。
任何正数前加上负号都等于负数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。负数用负号“-”标记,如2,5.33,45,0.6等。
2.正数:大于0的数叫正数(不包括0)
若一个数大于零(>0),则称它是一个正数。正数的前面可以加上正号“+”来表示。正数有无数个,其中分正整数,正分数和正无理数。
3.正数的几何意义:数轴上0右边的数叫做正数
4.数轴:规定了原点,正方向和单位长度的直线叫数轴。
所有的实数都可以用数轴上的点来表示。也可以用数轴来比较两个实数的大小。
5.数轴的三要素:原点、单位长度、正方向。
6.圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的.面所围成的旋转体
即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。
其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
7.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。设一个圆柱底面半径为r,高为h,则体积V:V=πr2h;如S为底面积,高为h,体积为V:V=Sh
8.圆柱的侧面积:圆柱的侧面积=底面的周长x高,S侧=Ch(注:c为πd)
圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。
特征:圆柱的底面都是圆,并且大小一样。
9.圆锥解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。
10.圆锥立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴。
11.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:V=1/3Sh
S是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径
12.圆锥体展开图的'绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。(如右图)在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)
13.圆锥的表面积:一个圆锥表面的面积叫做这个圆锥的表面积。
圆锥的表面积由侧面积和底面积两部分组成。
S=πR2(n/360)+πr2或(1/2)αR2+πr2(此n为角度制,α为弧度制,α=π(n/180)
14.圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱(等低等高)之间,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。
底面积和高不相等的圆柱圆锥不相等。
15.生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。
数学速算方法与技巧
进位加法的简单计算方法
不管多大的数相加其最基本的原则都是20以内的加法原则,20以内进位加法的速算口诀为:几加九进十减一、几加八进十减二、几加七进十减三、几加六进十减四。由于加法具有交换律,所以我们只需要记住这几句就可以了,在100以内的加法中,先观察两个各位数字,找出他们中间较大的数,按口诀进行计算可以很快的算出答案。
“凑整”先算法
例题1.24+44+56
=24+(44+56)
=24+100=124
解题思路:因为44+56=100是个整百的数,所以先把它们的和计算出来,这样再加别的数会比较简单。
例题2.53+36+47
=(53+47)+36
=100+36=136
解题思路:因为53+47=100是个整百数,所以先把+47带着符号搬家,搬到+36前面,然后再把53+47的和算出来。
养成良好的计算习惯
养成良好的计算习惯,是提高孩子计算能力切实有效的办法。帮助孩子养成以下良好计算习,应该做到“一看、二想、三计算”的认真计算习惯。
计算是一件非常严肃认真的事情,来不得半点马虎,但恰恰有孩子没有良好学习习惯,拿到计算题后,没有看清数字,没有弄清运算顺序,就盲目的算起来。
数学整数乘法知识点
(1)求几个相同加数的和的简便运算叫做乘法。
(2)在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
(3)在乘法里,0和任何数相乘都得0.
(4)1和任何数相乘都的任何数。
(5)一个因数×一个因数=积;一个因数=积÷另一个因数
一、认识圆
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
7、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形
只有3条对称轴的图形是:等边三角形
只有4条对称轴的图形是:正方形;
有无数条对称轴的图形是:圆、圆环。
二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
2、圆周率实验:
在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。在计算时,一般取π≈3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:C=πdd=C÷π
或C=2πrr=C÷2π
5、在一个正方形里画一个的圆,圆的直径等于正方形的边长。
在一个长方形里画一个的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1)周长的一半:等于圆的周长÷2计算方法:2πr÷2即πr
(2)半圆的周长:等于圆的周长的一半加直径。计算方法:πr+2r
三、数与代数
一、分数乘法
(一)分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)分数混合运算的运算顺序和整数的运算顺序相同。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c
二、分数乘法的解决问题(详细见重难点分解)
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面
2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。
3、写数量关系式技巧:
(1)“的”相当于“×”(乘号)
“占”、“是”、“比”“相当于”相当于“=”(等号)
(2)分率前是“的”:
单位“1”的量×分率=分率对应量
(3)分率前是“多或少”的意思:
单位“1”的量×(1±分率)=分率的对应量
六年级数学重难点
1、小数乘法,小数除法,简易方程,观察物体,多边形的面积,统计与可能性,数学广角和数学综合运用等。
在前面学习整数四则运算和小数加、减法的基础上,继续培养学生小数的四则运算能力。
2、用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容,进一步发展学生的抽象思维能力,提高解决问题的能力。
3、在空间与图形方面,这一册教材安排了观察物体和多边形的面积两个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,能辨认从不同方位看到的物体的形状和相对位置;
4、探索并体会各种图形的特征、图形之间的关系,及图形之间的转化,掌握平行四边形、三角形、梯形的面积公式及公式之间的关系,渗透平移、旋转、转化的数学思想方法,促进学生空间观念的进一步发展。
5、在统计与概率方面,本册教材让学生学习有关可能性和中位数的知识。通过操作与实验,让学生体验事件发生的等可能性以及游戏规则的公平性,学会求一些事件发生的可能性;
6、在平均数的基础上教学中位数,使学生理解平均数和中位数各自的统计意义、各自的特征和适用范围;进一步体会统计和概率在现实生活中的作用。
7、在用数学解决问题方面,教材一方面结合小数乘法和除法两个单元,教学用所学的乘除法计算知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容。
8、通过观察、猜测、实验、推理等活动向学生渗透初步的数字编码的数学思想方法,体会运用数字的有规律排列可以使人与人之间的信息交换变得安全、有序、快捷,给人们的生活和工作带来便利,感受数学的魅力。
9、培养学生的符号感,及观察、分析、推理的能力,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。
M在数学里代表什么
1)代表长度单位:米。这是英文meter(或metre)的简写;
2)代表时间单位:分钟。这是英文minute的简写;
3)代表千分之一:毫。这是英文milli的简写,通常加在单位前面,数值为千分之一的当前单位。比如mg:毫克;mm:毫米;ms:毫秒。
CuA是什么意思数学
CuA表示的是集合A在全集U里面的补集。例如集合U={1,2,3,4},A={1,2},CuA={3,4}。
六年级下册数学练习题
1、甲数的等于乙数的,甲数()乙数
A、C、=D、无法确定
2、一根铁丝的比米()
A、长B、短C、相等D、无法确定
3、一个小数的小数点先向右移动两位,再缩小100倍,原数()
A、扩大100倍B、缩小100倍C、扩大2倍D、大小不变
4、医院要反映出一个病人一天的体温变化情况,最好用()
A、条形统计图B、折线统计图C、扇形统计图
5、在6点钟的时候,时针和分针所成的角是()
A、锐角B、直角C、钝角D、平角
6、把60分解质因数是()。
①2×2×3×5=60②60=3×4×5③60=2×2×3×5×1④60=2×2×3×5
7、1克药放入100克水中,药与药水的比是()。
①1:99②1:100③1:101④100:101
8、一项工程,甲队单独做要8天,乙队单独做要10天。甲队和乙队的工效比()。
①8:10②5:4③1/4:1/5
9、设C为圆的周长,则×=()。
①圆的半径②圆的直径③圆的面积
10、植树小组去年植树,成活18棵,枯死3棵,成活率是()。
①98%②85.7%③16.7%④60%
11、甲数的25%等于乙数的,甲数()乙数。
①大于②小于③等于
12、甲数的等于乙数的,甲数和乙数的比是()。
①1/7:1/4②1/4:1/7③7:4④4:7
13、比24的多5的数是()。
①9②8③7
14、圆的周长和直径()。
①成正比例②成反比例③不成比例
15、一个半圆图形,半径是r,它的周长是()。
①×2πr②πr+r③πr④(2+π)r
六年级数学下册复习计划
一、基本情况
本班共有学生55名,学生基础薄弱,但通过上学期一学期的学习,学生学习兴趣较浓,学习习惯初步形成。
二、教材简析
本册教材内容分为“圆柱和圆锥”、“正比例和反比例”和“总复习”三部分。“总复习”包括4个单元。
(一)圆柱和圆锥
包括“面的旋转”“圆柱的表面积”“圆柱的体积”“圆锥的体积”4个课题。
(二)正比例和反比例
包括“变化的量”“正比例”“画一画”“反比例”“观察与探究”“图形的放缩”“比例尺”7个课题。
(三)总复习
包括“数与代数”“空间与图形”“统计与概率”“解决问题的策略”。
三、教学目的和要求
1、使学生认识圆柱和圆锥,掌握它们的特征,认识圆柱的底面、侧面和高,认识圆锥的底面和高,会求圆柱的侧面积和表面积,掌握圆柱圆锥的体积计算方法。
2、使学生理解、掌握正比例、反比例的意义,能正确判断两种量是否成正比例、反比例。学会使用数对确定点的位置,懂得将图形按一定比例进行放大和缩小。理解比例尺的意义,能正确计算平面图的比例尺。提高学生利用已有知识、技能解决问题的能力,培养学生应用数学的意识和周密思考问题的良好习惯。
3、通过对生活中与体育相关问题的解决,使学生学会综合运用包括算式与方程在内的相关知识和技能解决问题,发展抽象思维能力和解决问题的能力,进一步培养学生应用数学的意识。
4、通过对生活中与科技相关问题的解决,使学生扩展数学视野,培养实事求是的科学精神和态度,进一步发展学生的思维能力,提高解决问题的能力和增强应用数学的意识。
5、使学生比较系统地牢固地掌握有关整数和小数、分数和百分数、简易方程、比和比例等基础知识;具有进行整数、小数、分数四则运算的能力,会使用学过的简便算法,合理、灵活地进行计算,进一步提高计算能力;会解简易方程;养成检查和验算的习惯。
6、使学生巩固已获得的一些计量单位大小的表象,进一步明确各种计量单位的应用范围,牢固地掌握所学的单位间的进率,能够比较熟练地进行名数的简单换算。
7、使学生牢固地掌握所学的几何形体的特征,进一步掌握一些计算公式的推导过程和相互之间的联系,能够比较熟练地计算一些几何形体的周长、面积和体积,巩固所学的简单画图、测量等技能,进一步发展学生的空间观念。
8、使学生掌握所学的统计初步知识,能够看懂和绘制简单的统计图表,能对统计数据作简单的分析,并且能够计算求平均数问题。
9、使学生牢固地掌握所学的一些常见的数量关系和应用题的解答方法,能够比较灵活地运用所学知识独立地解答所学的应用题和生活中一些简单的实际问题,进一步培养学生的`思维能力。
四、教学措施
1、进一步培养合理、灵活地进行计算的能力;
2、提高学生的分析、比较和综合能力;
3、培养抽象、概括的能力和判断、推理能力,以及迁移类推的能力;
4、培养思维的灵活性和敏捷性。
5、培养综合运用知识解决实际问题的能力。
6、进一步发展学生的空间观念。
7、加强口算练习,学会解答比较简单的整数、分数、小数四则混合运算,逐步提高学生四则计算的能力。
8、能掌握一些常见的数量关系和应用题的解答方法,逐步提高解答应用题的能力。
9、增加动手操作的机会,使学生获得正确的图形表象,正确计算一些几何形体的周长、面积和体积。
10、能掌握单位间的进率,能够正确进行名数的换算。
五、教学课时安排
(一)圆柱和圆锥10课时
(二)正比例和反比例15课时
总复习40课时
数与代数20课时
空间与图形15课时
统计与概率3课时
解决问题的策略2课时