知识点在教育实践中,是指对某一个知识的泛称。以下是小编整理的一些小学数学重要知识点及公式,仅供参考。
小学数学重要知识点
【时分秒】
1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长。
2、钟面上有12个数字,12个大格,60个小格;每两个数之间是1个大格,也就是5个小格。
3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。
4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。
5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。
6、公式(每两个相邻的时间单位之间的进率是60):
1时=60分
1分=60秒
7、常用的时间单位:时、分、秒、年、月、日、世纪等。
1世纪=100年
1年=12个月
【分数的初步认识】
1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。
几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、比较大小的方法:
①分子相同,分母小的分数反而大,分母大的分数反而小。
②分母相同,分子大的分数就大,分子小的分数就小。
4、分数加减法:
①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,分子相加、减。
②计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。
5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。
1、自然数整数的意义
用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数它们都是整数。
最小的自然数是0,没有的自然数。自然数的个数是无限的。
2、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。其中一是计数的基本单位。
3、十进制计数法10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4、数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个亿或万字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、万以上数的写法:
(1)一个数含有万级和亿级,应从位写起,一级一级地往下写。
(2)写数时哪一位上是几就在那一位上写几,遇到哪一位上一个单位也没有,就在那一位上写0占位。
8、比较两个数的大小:
(1)如果位数不同,位数多的那个数就大,位数少的那个数就小;
(2)如果位数相同,就从位开始比较,位数大的那个数就大;如果第一位相同就看下一位,以此类推。
9、整万、整亿数的改写:
(1)改写成以万为单位的数,把万位后面的.4个0去掉,加上一个万字即可。
(2)改写成以亿为单位的数,把亿位后面的8个0去掉,加上一个亿字即可。
10、近似数与准确数:
有些数的前面有约字,都不是准确数,像这样的数我们称做为近似数。
四舍五入法:在取近似数的时候,按要求保留到哪一位,这一位后面的数称为尾数。如果尾数的位数字小于5,就把尾数去掉。如果尾数的位数字大于或等于5,就把尾数舍去并向它的前一位进1,这种取近似数的方法叫做四舍五入法。
省略万位或亿位后面的尾数求近似数,就是用四舍五入法,把一个数精确(保留)到万位或亿位,求它的近似数。
(1)用万作单位的近似数,应看千位上的数是几,再决定是四舍还是五入。
(2)用亿作单位的近似数,就看千万位上的数是几,再决定是四舍还是五入。
(3)不管是用万还是用亿作单位,写近似数时都要用约等号(≈)连接,末尾还要写上万字或亿字。
11、求近似数和数的改写的相同点:求近似数和数的改写都是把一个较大的数表示成整万或整亿的数,后面都要加一个万字或亿字。
不同点:求近似数是把一个数变成一个近似数,数的大小发生了变化;而数的改写只是把一个大数写成了以万或亿为单位的数,大小没有发生变化。
12、数字编码。数不仅可以用来表示数量和顺序,还可以用来编码。编码中的数字代表着一定的意义。编码具有有序性。
1、线
⑴直线
直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
⑵射线
射线只有一个端点;长度无限。
⑶线段
线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
两点之间线段的长度就是两点间的距离。
直线射线线段的联系:都是直的,射线和线段都是直线的一部分。
⑷同一平面内两条直线的位置关系有平行和相交两种。
⑸平行线
【定义】在同一平面内,不相交的两条直线叫做平行线。直线a平行于b,直线b也平行于a。
【性质】过直线外一点只能画一条直线与已知直线平行。
两条平行线之间的垂直线段有无数条,长度都相等。平行线间垂直线段处处相等。
【画法】一合,二靠,三移,四画。
⑹垂线
【定义】两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。
【性质】
过一点(直线上或直线外)只能画一条直线与已知直线垂直。
从直线外一点到这条直线所画的垂直线段最短,它的长度叫做点到直线的距离
【画法】一合,二过,三画,四标。
2、角
(1)角的定义从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。
(2)角的度量角的计量单位是度,用符号°表示。把半圆分成180等份,每一份所对的角的大小是1度。记作1°。
(3)角的大小比较角的大小与角的两边画出的长短没有关系。角的大小要看两条边叉开的大小,叉开得越大,角越大。
(4)角的画法一画线,二量角,三连线,四标注。一副三角板可以画出的角的度数是15的倍数。
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r或r=d÷2
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:
围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π=周长÷直径≈3.14
所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr
圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径=πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)
S圆=πr×r=πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。
周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积=大圆–小圆=πR2-πr2
扇形面积=πr2×n÷360(n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
一个圆的半径增加a厘米,周长就增加2πa厘米。
一个圆的直径增加b厘米,周长就增加πb厘米。
6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
小学数学公式
一、几何公式
1.长方形的周长=(长+宽)×2
C=(a+b)×2
2.长方形的面积=长×宽
S=ab
3.正方形的周长=边长×4
C=4a
4.正方形的面积=边长×边长
S=a×a
5.三角形的面积=底×高÷2
S=ah÷2
6.三角形的内角和=180度
7.平行四边形的面积=底×高
S=ah
8.梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
9.圆的直径=半径×2(d=2r)
10.圆的半径=直径÷2(r=d÷2)
11.圆的周长=圆周率×直径=圆周率×半径×2
C=π×d=2πr
12.圆的面积=圆周率×半径×半径
S=π×r×r
13.长方体的体积=长×宽×高
V=abh
14.正方体的体积=棱长×棱长×棱长
V=aaa
15.圆柱的侧面积:圆柱的侧面积等于底面的周长乘高
S=ch=πdh=2πrh
16.圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积
S=ch+2s=ch+2πr×r
17.圆柱的体积:圆柱的体积等于底面积乘高
V=Sh
18.圆锥的体积=1/3底面×积高
V=1/3Sh
二、单位的换算
1公里=1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
20.1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
21.1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克
1千克=1000克=1公斤=2市斤
1公顷=10000平方米
1亩=666.666平方米
1升=1立方分米=1000毫升
1毫升=1立方厘米
1元=10角
1角=10分
1元=100分
1世纪=100年
1年=12月
大月(31天)有:135781012月
小月(30天)的有:46911月平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时
1时=60分=3600秒1分=60秒小学数学公式汇总,妈妈请为孩子收藏起来
三、数量关系
每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
加数+加数=和
和-一个加数=另一个加数
被减数-减数=差
被减数-差=减数
差+减数=被减数
因数×因数=积
积÷一个因数=另一个因数
被除数÷除数=商
被除数÷商=除数
商×除数=被除数小学数学公式汇总,妈妈请为孩子收藏起来
四、特殊问题
相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间
追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间
流水问题
(1)一般公式:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2
(2)两船相向航行的'公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度
浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量
利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-5%)
小升初数学试题
一、填空题。
1、小胡和小涂计算甲、乙两个两位数的乘积,小胡看错了甲数的个位数字,计算结果为1274;小涂看错了甲数的十位数字,计算结果为819。甲数是____。
答案:93
2、1994年“世界杯”足球赛中,甲、乙、丙、丁4支队分在同一小组。在小组赛中,这4支队中的每支队都要与另3支队比赛一场。根据规定:每场比赛获胜的队可得3分;失败的队得0分;如果双方踢平,两队各得1分。已知:
(1)这4支队三场比赛的总得分为4个连续奇数;
(2)乙队总得分排在第一;
(3)丁队恰有两场同对方踢平,其中有一场是与丙队踢平的。
根据以上条件可以推断:总得分排在第四的是____队。
答案:丙
3、我们规定两人轮流做一个工程是指,第一个人先做一个小时,第二个人做一个小时,然后再由第一个人做一个小时,然后又由第二个人做一个小时,如此反复,做完为止。如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?
解:两次做每人所花时间:甲乙
5小时4.8小时
4.6小时5小时
∴甲做0.4小时完成的工程等于乙做0.2小时,乙的效率是甲的2倍,甲做5小时完成的任务乙只要2.5小时就能完成。
∴乙单独完成这个工程要2.5+4.8=7.3(小时)
4、甲、乙两地相距120千米,客车和货车同时从甲地出发驶向乙地,客车到达乙地后立即沿原路返回,在途中的丙地与货车相遇。之后,客车和货车继续前进,各自到达甲地和乙地后又马上折回,结果两车又恰好在丙地相遇。已知两车在出发后的2小时首次相遇,那么客车的速度是每小时多少千米?
解:(示意图略)
第一次相遇,两车合走2个全程,第二次相遇,两车又比第一次相遇时多走2个全程,∴客车、货车第一次相遇时各自走的路程与第一次相遇到第二次相遇时各自走的路程分别相等。两次相遇都在丙点,设乙丙之间路程为1份,可得甲丙之间路程为2份,∴乙丙间路程=120÷3=40,
客车速度为(120+40)÷2=80(千米/小时)
二、判断。
1.一个等腰三角形的顶角是锐角,则这个三角形一定是锐角三角形。( )
2.三位小数a精确到百分位是8.60,那么a最大为8.599。 ( )
3.一根铁丝长240厘米,焊成一个长方体框架,长、宽、高的比是3∶2∶1,它的体积是6000立方厘米。 ( )
4.侧面积相等的两个圆柱,表面积也一定相等。 ( )
5.两个自然数的公有质因数的积一定是这两个数的最大公因数。( )
三、选择正确答案的序号填入括号内。
1.下列叙述正确的是( )。
A.条形统计图B、折线统计图C、扇形统计图D、以上答案都可以
2.在比例尺是1:30000000的地图上量的甲、乙两地相距5.5厘米,一辆汽车按3:2分两天行完全程,那么第二天行的路程是( )
A.6.6千米 B.66千米 C.660千米 D.6600千米
3.一种商品的价格先提价30%后,再打7折出售,现在售价是原价的( )
A.70%B、100%C、109% D.91%
四、应用题
1.修一条水渠,第一周修了全长的15 ,正好是600米,第二周修了全长的35%,第二周修了多少米?
2.文具店运进红蓝墨水65箱,当红墨水售出11箱,蓝墨水售出20%后,剩下的红蓝墨水相等。问售出蓝墨水多少箱?
3.修路队三天修完一段路。第一天修了全长的25%,第二天修了400米,第三天和第二天修路的长度比是5︰4。这段路长是多少米?
4.做一种零件,8人0.5小时完成64个,照这样计算,3小时要完成144个零件,需要多少个工人?
5.一件工程,甲、乙两人合作18天可以完成。甲单独做要30天完成。现在由甲、乙两人合作6天后,再由甲独做10天,这件工程还剩几分之几?
6.某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?